If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-23t+13=0
a = 4.9; b = -23; c = +13;
Δ = b2-4ac
Δ = -232-4·4.9·13
Δ = 274.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{274.2}}{2*4.9}=\frac{23-\sqrt{274.2}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{274.2}}{2*4.9}=\frac{23+\sqrt{274.2}}{9.8} $
| 2/3x+5/3x-1/3x=14 | | 2x+12=142x+12=-14 | | 24x-12=24x-4 | | -1x-4=6x+52 | | 1-4p-7=10 | | 3^3x-4=0.45 | | 4x-4(1/2x-3)=1/2x-6 | | Xx4=5 | | m3−2(9+2m)=m | | 18=4x*6 | | X2+3x-28=0 | | 5m+9+5m=30+7m+15+15 | | 6x+5-2x=19x | | 31-8x=-2(6x+7)-5x | | 2x+12=142x+12=-4 | | X/x+9=4/3 | | -2.5(3x-4)=32.5 | | 2×^2-2y^2=24 | | 5x-47+5x=-17 | | 2/3n+9=19 | | (3x+8)/4=17 | | 0.5x(2x-4)=-17 | | 2^2x=3 | | -12=p+2p-3 | | 0.2(x-6)=6 | | O.2(10-5c)=5c-16 | | 2x+12=42x-12=-4 | | X^2*3x-70=0 | | 8k2+22k+15=0 | | ×^2-x-12=0 | | 4x2+16x−9=0 | | 3/4u-7=-7 |